Disequazioni

  • Materia: Disequazioni
  • Visto: 1771
  • Data: 17/12/2009
  • Di: Redazione StudentVille.it

$root(3)(x^3-3x^2)>=root(3)(-2x)$

esercizio svolto o teoria

A cura di: Francesco Speciale

$root(3)(x^3-3x^2)>=root(3)(-2x)$


$root(3)(x^3-3x^2)>=root(3)(-2x)$
Eleviamo ambo i membri al cubo
$(root(3)(x^3-3x^2))^3>=(root(3)(-2x))^3$;
$x^3-3x^2>=-2x$;
$x^3-3x^2+2x>=0$;
$x(x^2-3x+2)>=0$
Una prima soluzione sarà $x>=0$.
Ora studiamo la disequazione d secondo grado:
$x^2-3x+2>=0$

$\Delta=b^2-4ac=(-3)^2-(4*1*2)=9-8=1$
$x_(1,2)=(-b+-sqrt(\Delta))/(2a)=(3+-sqrt1)/2=(3+-1)/2 => x_1=2 ^^ x_2=1$.

Siccome il segno del coefficiente di $x^2$ è concorde col segno della disequazione,
prenderemo gli intervalli esterni, quindi soluzione della disequazione sarà:
$x<=1 vv x>=2$.

Intersechiamo, ora, le soluzioni trovate e otterremo la soluzione finale

diseq_razio_4.jpg

 

 

 $S={0<=x<=1 vv x>=2}$.