Geometria analitica

  • Materia: Geometria analitica
  • Visto: 5914
  • Data: 05/02/2009
  • Di: Redazione StudentVille.it

Traslazione di un\'ellisse

esercizio svolto o teoria

A cura di: Stefano Sannella

{etRating 4} Si determini una traslazione che trasformi la curva di equazione x^2+4y^2-4x+4y-11=0 in un' ellisse con centro nell'origine.


 

Si può usare il metodo del completamento dei quadrati.
$x^2+4y^2-4x+4y-11=0$

Notiamo che abbiamo
$x^2-4x$, questa espressione può essere scritta facendo comparire un quadrato se sommiamo e sottraiamo $4$, ovvero
$x^2-4x+4-4=(x-2)^2-4$

Poi abbiamo
$4y^2+4y$ e qui possiamo invece fare lo stesso lavoro con +1, quindi
$4y^2+4y+1-1=(2y+1)^2-1$ o ancor meglio $4(y-1/2)^2-1$

Pertanto sostituendo queste espressioni equivalenti ottengo
$[(x-2)^2-4]+[4(y-1/2)^2-1]-11$
e operando la traslazione
${(Y=y-1/2),(X=x-2):}$
otteniamo nel nuovo riferimento, dopo banali conti,
$X^2+4Y^2-16=0$
e questa è un'ellisse con centro nell'origine del nuovo sistema di riferimento.

 

FINE