Integrali

  • Materia: Integrali
  • Visto: 858
  • Data: 22/05/2008
  • Di: Redazione StudentVille.it

$\\int_-1^1x^4arctgx=x^5/5arctgx-\\intx^5/5(1/(1+x^2))dx$

esercizio svolto o teoria

A cura di: Gianluca

$\int_-1^1x^4arctgx=x^5/5arctgx-\intx^5/5(1/(1+x^2))dx$

=$x^5/5arttgx-1/5\intx^5/(1+x^2)dx$

=$x^5/5arctgx-1/5\intx^3-xdx-1/5\intx/(x^2+1)dx$

=$x^5/5arctgx-1/5(x^4/4)+1/5(x^2/2)-1/5\intxdx-1/5\int1/(x^2+1)dx$

=$1/5x^5arctgx-1/20x^4+1/10x^2-1/5arctgx$

=$(1/5x^5-1/5)arctgx-1/20x^4+C$

di Anoè Gianluca - www.chenesoio.com