Trigonometria

  • Materia: Trigonometria
  • Visto: 1441
  • Data: 09/01/2010
  • Di: Redazione StudentVille.it

$(asin((\\pi)/2)+bcos(\\pi)+2abcos((\\pi)/2))/(a^2cos0+2abcos0sin(3/2(\\pi))-b^2cos(\\pi))$ con $a!=b$

esercizio svolto o teoria

A cura di: Francesco Speciale

Semplificare la seguente espressione
$(asin((\pi)/2)+bcos(\pi)+2abcos((\pi)/2))/(a^2cos0+2abcos0sin(3/2(\pi))-b^2cos(\pi))$  con $a!=b$


$(asin((\pi)/2)+bcos(\pi)+2abcos((\pi)/2))/(a^2cos0+2abcos0sin(3/2(\pi))-b^2cos(\pi))=$
Essendo $sin((\pi)/2)=1=cos0 , cos((\pi)/2)=0 , cos(\pi)=-1=sin(3/2(\pi))$,
sostituendo nell'espressione si ha
$=(a*1+b(-1)+2ab*0)/(a^2*1+2ab*1(-1)-b^2(-1))=$
$=(a-b)/(a^2-2ab+b^2)=(a-b)/(a-b)^2=1/(a-b)$.
Quindi l'equazione ha significato, perchè abbiamo supposto $a!=b$.